OpenMIP

Enabling HPC since 1997

OpenMP APl Version 5.0

A Story about Threads, Tasks, and Devices

Michael Klemm

Chief Executive Officer
OpenMP Architecture Review Board
michael.klemm@openmp.org

OpenMP

Disclaimer

m My day time job is being a Principal Engineer at Intel.
m| am an HPC person.
m My view might be (too) skewed towards to the HPC domain.

m This talk might be tainted with my own opinion.

OpenMP

OpenMP Architecture Review Board

%[
o AMDD wgone® arm (@ i e
The mission of the OpenMP ARB @

(Architecture Review Board) is
to standardize directive-based
multi-language high-level
parallelism that is performant,
productive and portable.

[o®) —— e e
OMP SRy [Selee FUITSU =5
ool (intel)‘ LLg M 4@35@3}335

2 : @D!
J\A#a&w Acron @/ NEC
WAUI HIGH £EREORBAIOS OOMEUIIS cekTER

NVIDIA.
\
@ ey (@) QN

TAcC Q‘ FAVARE MANCHESTER

The University of Manchester

We adapt. You succeed.

OpenMP

Membership Structure

mARB Member

= Highest membership category

= Participation in technical discussions and organizational decisions
= \/oting rights on organizational topics

= Voting rights on technical topics (tickets, TRs, specifications)

m ARB Advisor & ARB Contributors

= Contribute to technical discussions
= Voting rights on technical topics (tickets, TRs, specifications)

Your organization can join and influence the direction of OpenMP.

Talk to me or send email to michael.klemm@openmp.org.

OpenMP

OpenMP Roadmap

m OpenMP has a well-defined roadmap:
= 5-year cadence for major releases
" One minor release in between
= (At least) one Technical Report (TR) with feature previews in every yearx

OpenMP 5.0 OpenMP 5.x OpenMP 6.0

Nov’17 Nov’18 Nov’19 Nov’20 Nov’21 Nov’22 Nov’23
Public Comment Public Comment Public Comment
Draft (TR7) Draft (TR9) Draft (TR12)

* Numbers assigned to TRs may change if additional TRs are released. 5

OpenMP

Levels of Parallelism in the OpenMP API v5.0

Cluster Group of computers
communicating through fast interconnect
Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect
Node Group of cache coherent processors
communicating through shared memory/cache
Core Group of functional units within a die
communicating through registers
Hyper-Threads . Group of thread contexts sharing functional units
Superscalar Group of instructions sharing functional units
Pipeline Sequence of instructions sharing functional units
Vector l Single instruction using multiple functional units

Bronis R. de Supinski, Thomas R.W. Scogland, Alejandro Duran, Michael Klemm, Sergi Mateo, Stephen L. Olivier, Christian Terboven,
and Timothy Mattson. The Ongoing Evolution of OpenMP. Proceedings of the IEEE, 106(11):2004-2019, November 2018. 6

OpenMP

Definitions

mThe Past: OpenMP < 3.0
mThe Present: OpenMP 2> 3.0 and OpenMP <£5.0
mThe Future: OpenMP >5.0

OpenMP

The Past

(or: Stuff you shouldn’t be doing no more!)

OpenMP Worksharing

{

fpragma omp parallel

fpragma omp for
for (1 = 0; 1i<N; 1i++)
{..}

fpragma omp for
for (1 = 0; i< N; i++)
{..}

OpenMP

OpenMP Worksharing/2

double a[N];
double 1,s = 0;

fpragma omp parallel for reduction(+:s)
private (1) schedule(static, 4)

for (i = 0; 1i<N; i++)

\

OpenMP

s=0
S\O S'\O s\=0 s\'=0

10

OpenMP

Good Old Times?

mOpenMP version £ 2.5 standardized the common approach at the time.

m\Very simplistic programming that abstracts from the native threading
interface.

m Limited scalability due to the effects of Amdahl’s law: serial parts overly limit
parallel performance.

m Not suited for the complex algorithms that emerged in the last decade.

11

OpenMP

The Present
(or: Modern OpenMP)

OpenMP

OpenMP Version 5.0

mOpenMP 5.0 introduced powerful features to improve programmability

Task Reductions Detachable Tasks

Memory Allocators

Initial C11, C++11, C++14 and C++17 support pependence Objects Tools APIs

Complete Fortran 2003 Support, Initial Fortran 2008 Support Unified Shared Memory

Improved Affinity Support

Loop Construct Collapse Non-Rectangular Loops
Task-to-data Affinity
Multi-Level Parallelism Data Serialization for Offload (Deep Copy)
Meta-Directives Function Variants Reverse Offload

Parallel Scan

Interoperability and Usability Enhancements Improved Task Dependences

OpenMP

The Present
(or: Modern OpenMP)

Task-based Programming

OpenMP

(Modern) Task-based Execution Model

m Supports unstructured parallelism m Example:
= unbounded loops

#pragma omp parallel

while (<expr>) { #pragma omp master
“ e while (elem != NULL) {
} #pragma omp task
compute (elem) ;
= recursive functions elem = elem->next;

void myfunc (<args>)

{

.; myfunc(<newargs>); ...;

}

m Several scenarios are possible:

= single creator, multiple creators, nested tasks
(tasks & worksharing) |

m All threads in the team are candidates to execute tasks

15

OpenMP

Task Synchronization w/ Dependencies

int x = 0;
#fpragma omp parallel
#fpragma omp single
{
@ #pragma omp task
std::cout << x << std::endl;

@ #pragma omp task
long running task();

#fpragma omp taskwait

@ fpragma omp task

OpenMP 3.1

int x = 0;

#fpragma omp parallel

#fpragma omp single

{

@ #pragma omp task depend(in: x)
std::cout << x << std::endl;

OpenMP 4.0

@ f#pragma omp task
long running task();

@ #fpragma omp task depend(inout: x)
X++;

}

X++;
tl__I_-_
22—}

}
t3

t1 S
2 —I§
-

t3

OpenMP

Example: Cholesky Factorization

void cholesky(int ts, int nt, double* al[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization
potrf(alk][k], ts, ts);

// Triangular systems

for (int 1 = k + 1; 1 < nt; 1i++)
fpragma omp task

@ trsm(alk][k], alk][i], ts, ts)

}

#pragma omp taskwait

// Update trailing matrix
for (int 1 = k + 1; 1 < nt; 1i++)
for (int j =k + 1; j < 1i; J++
#pragma omp task
@ dgemm (a[k] [1], alk]l[3], alj]

}
#fpragma omp task

@svrk(alk][i], alil[i], ts, ts);
}

#pragma omp taskwait

OpenMP 3.1

void cholesky(int ts, int nt, double* alnt][nt]) {
for (int k = 0; k < nt; k++) {

// Diagonal Block factorization
#pragma omp task depend(inout: alk][k])
()potrf(a[k][k], ts, ts);

// Triangular systems
for (int i =k + 1; 1 < nt; i++) {
fpragma omp task depend(in: alk][k])
depend (inout: alk][i])
.trsm(a[k][k], alkl[i], ts, ts);
}

// Update trailing matrix

for (int i =k + 1; 1 < nt; i++) {
for (int j = k + 1; 3 < 1i; Jj++) {
#pragma omp task depend(inout: a[j][i])
depend (in: alk][i], alk]l[J])
@ dgemm(al[k] [1], alk]l[j]l, aljll[i]l, ts, ts);
}
fpragma omp task depend(inout: al[i][i])
depend (in: aflk][i])
@ svrk(alkl[i]l, alilli]l, ts, ts);
}

} OpenMP 4.0

17

OpenMP

Example: saxpy Operation

1<SIZE;

for (1 = 0;
[1]*B[1]*S;

Ali]=A

blocking

i+=1) {

taskloop

for (1 = 0; 1<SIZE; 1+=TS) {

UB = SIZE < (i+TS) ? SIZE : 1i+TS;

for (ii=i; 1i<UB; ii++) {
A[ii]=A[1i]*B[11i]*S;

}

for

(1 = 0; 1<SIZE; 1i+=TS) {
UB = SIZE < (i+TS) ? SIZE : 1i+TS;
#pragma omp task private (ii) \
firstprivate (i,UB) shared(S, A, B)
for (ii=i; 1i<UB; ii++) {
Al1i]=A[11]1*B[1i1]*S;
}

fpragma omp taskloop grainsize (TS)
for (1 = 0; 1<SIZE; 1i+=1) {
A[i]=A[1]*B[1]*S;

}

m Manual transformation is cumbersome and
error prone

m Applying blocking techniques for large loops
can be tricky

m taskloop: improved programmability

18

Examp

e: Sparse CG w/ taskloop

OpenMP

#fpragma omp parallel
#fpragma omp single
for (iter = 0; iter < sc->maxIter; iter++) {
precon (A, r, z);
vectorDot (r, z, n, &rho);
beta = rho / rho old;
xpay (z, beta, n, p):;

matvec (A, p, 9);
vectorDot (p, g, n, &dot pq);
alpha = rho / dot pg;

axpy (alpha, p, n, x);

axpy (-alpha, g, n, r);

//

grain size(grainsz)

sc->residual = sqgrt(rho) * b , , ,
if (sc->residual <= sc->tole for (1 = 0; 1 < A->n; i++) {
break; YO = 0; ,
rho old = rho; is = A->ptrilil];
) - ie = A->ptr[i + 11;
for (J = 1is; 3 < ie; J++) |

J0 = index[]];

y0 += value[]] * x[]0];

y[i] = yO0;

void matvec (Matrix *A, double *x, double *y) {

#fpragma omp taskloop private(j,is,ie,j0,y0) \

19

Task Reductions

m Task reductions extend traditional
reductions to arbitrary task graphs

m Extend the existing task and
taskgroup constructs

mAlso work with the taskloop
construct

OpenMP

int res = 9;
node_t* node = NULL;

#pragma omp parallel

{
#pragma omp single
{
#pragma omp taskgroup task reduction(+: res)
{
while (node) {
#pragma omp task in_reduction(+: res) \
firstprivate(node)
{
res += node->value;
}
node = node->next;
}
}
}
}

20

OpenMP

The Present
(or: Modern OpenMP)

Heterogeneous Programming for Coprocessors

OpenMP

Device Model

mOpenMP 4.0 supports accelerators/coprocessors, aka heterogeneous
programming
m Device model:

= One host
= Multiple accelerators/coprocessors of the same kind

Coprocessors

Host 22

OpenMP

Execution Model

mThe target construct transfers the control flow to the target device
» Transfer of control is sequential and synchronous
» The transfer clauses control direction of data flow
= Array notation is used to describe array length

mThe target data construct creates a scoped device data environment
* Does not include a transfer of control
* The transfer clauses control direction of data flow
" The device data environment is valid through the lifetime of the target data region

mUse target update to request data transfers from within a target data
region

23

OpenMP

Example

#pragma omp target data device(®) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(9)
#pragma omp parallel for
for (i=0@; i<N; i++)
tmp[i] = some computation(input[i], 1i);

update_input_array on_the_host(input);
#pragma omp target update device(®) to(input[:N])
#pragma omp target device(9)
#pragma omp parallel for reduction(+:res)

for (i=0@; i<N; i++)
res += final computation(input[i], tmp[i], 1)

24

Multi-level Device Parallelism

OpenMP

int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

Hpragma omp target data map(to:x[0:n])

{
Hpragma omp target map(tofrom:y)

Hpragma omp teams num_teams(num_blocks) num_threads(bsize)

T L L
1 ,l dll do the same | ,l ,l
» L) LY LY $“$ II iwi II “‘ II \w‘ L L L L)

Hpragma omp distribute
for (int i = 0; 1 < n; i += num_blocks){

| ereen | reveen | eereen [oeremm |
1 | 1 workshare f‘W/o barri l | 1 |
A | | R ¥ II* ol | A

Hpragma omp parallel for
for (int j = 1i; j < 1 + num_blocks; j++) {

I"IIIII"Illlllllllll“lllll"l
workshare (w/ barrier |”| H”l
lUil l”lv"vwwv"vuwvﬂvuwv"wvw%"
y[J] = a*x[J] + y[Jl;
Fr o}

25

Multi-level Device Parallelism/2

OpenMP

int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

Hpragma omp target map(to:x[0:n]) map(tofrom:y)
{
Hpragma omp teams distribute parallel for \
num_teams(num_blocks) num_threads(bsize)
for (int i = 0; i < n; ++i){
y[i] = a*x[1] + y[i];
}
}
}

26

OpenMP

loop Construct

m Existing loop constructs are tightly bound to execution model:

#pragma omp for #pragma omp simd #pragma omp taskloop
for (i=0; i<N;++i) {..} for (i=@; i<N;++i) {..} for (i=0; i<N;++i) {..}
generate tasks
)
barrier
Y AN AN
join | taskwait

mThe loop construct is meant to let the OpenMP implementation pick
choose the right parallelization scheme.

27

Simplifying Multi-level Device Parallelism

OpenMP

int main(int argc, const char* argv[]) {

float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

Hpragma omp target map(to:x[0:n]) map(tofrom:y)
{
Hpragma omp loop

for (int i = 0; i < n; ++i){

y[i] = a*x[1] + y[i];
}
}

}

28

OpenMP

The Present
(or: Modern OpenMP)

Controlling the Memory Hierarchy

OpenMP

Memory Allocators

mNew clause on all constructs with data sharing clauses:
" gllocate([allocator:] 1list)

m Allocation:
"omp alloc(size t size, omp allocator t *allocator)

mDeallocation:
"omp free(void *ptr, const omp allocator t *allocator)
" allocator argument is optional

mallocate directive
= Standalone directive for allocation, or declaration of allocation stmt.

30

Example: Using Memory Allocators

OpenMP

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high bw mem alloc)
#pragma omp allocate(b) // controlled by OMP ALLOCATOR and/or omp_set default allocator
double *p = (double *) omp_alloc(N*M*sizeof(*p), my_allocator);

#pragma omp parallel private(a) allocate(my_allocator:a)

{
some_parallel code();

}
#pragma omp target firstprivate(c) allocate(omp const mem _alloc:c) // on target; must be compile-time expr
{

#pragma omp parallel private(a) allocate(omp _high bw mem alloc:a)

{

some_other_parallel code();
}

}

omp_free(p);

31

OpenMP

The Future
(or: Post-modern OpenMP)

OpenMP

Continuum of Control

#pragma omp for \
#pragma omp task #pragma omp for schedule(static,5)

i
#pragma omp loop

| |
< ——

Descriptive Prescriptive

m Express “what” m Express “how”

m Ignore implementation m Focus on implementation

m Rely on quality of implementation m Expose control over
execution

m OpenMP strives to
= Support a useful subset of this spectrum
= Provide a structured path from descriptive to prescriptive where needed

33

OpenMP

OpenMP AP| Version 5.1

mOpenMP 5.0 evolved the OpenMP API quite considerably

m\Version 5.1 will refine OpenMP 5.0 features
m Plus: clarifications, corrections, editing, etc.

mNo big additions; vendors need time for high-quality implementations

34

OpenMP AP| Version 5.1

mImproved C++ support through attribute syntax

m Utility directives, e.g., error
" Print diagnostic information at compile time or runtime
" May include severity clause: fatal orwarning

m Improved native device support (e.g., CUDA streams)

mLanguage-level subset of OpenMP (inverse of requires)

OpenMP

35

OpenMP

OpenMP AP| Version 6.0

mSupport for descriptive specification and prescriptive control
mImprovements for memory affinity and complex memory hierarchies/traits
m Free-agent threads, relaxing the notion of thread teams

m Event-driven parallelism

m Completed support for new normative references

36

OpenMP

Adverts: Engage with the
OpenMP Community

OpenMPCon & IWOMP 2019

m Dates:
= OpenMPCon: Sep9-10
" Tutorials: Sep 11
= IWOMP: Sep 12-13
m Location:

= University of Auckland

m General Chair:

= Dr. Oliver Sinnen

= PARC lab

= Department of Electrical and
Computer Engineering

= University of Auckland

OpenMP

Tutorials at Supercomputing 2019

mOpenMP Common Core: A “Hands-On” Exploration
» Barbara Chapman, Helen He, Alice Koniges, Tim Mattson,

m Mastering Tasking with OpenMP

" Michael Klemm, Christian Terboven, Xavier Teruel, Bronis de Supinski

mAdvanced OpenMP: Performance and 5.0 Features
= Michael Klemm, Christian Terboven, Bronis de Supinski, Ruud van der Pas

mProgramming Your GPU with OpenMP: A Hands-On Introduction
= Simon Mclntosh-Smith, Tim Mattson

39

OpenMP

The Last Slide

mOpenMP 5.0 was a major leap forward
" Maybe the biggest release ever in the history of OpenMP
= Well-defined interfaces for tools
= New ways to express parallelism, improved usage of existing features

mOpenMP is a modern directive-based programming model
* Multi-level parallelism supported (coprocessors, threads, SIMD)
" Task-based programming model is the modern approach to parallelism
= Powerful language features for complex algorithms
= High-level access to parallelism; path forward to highly efficient programming

40

OpeniVIP

Enabling HPC since 1997

Visit www.openmp.org for more information

